206 research outputs found

    Accuracy improvement in the TDR-based localization of water leaks

    Get PDF
    A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak

    Practical implementation of diffused sensing elements for TDR-based monitoring of rising damp in building structures

    Get PDF
    This paper describes the operating and technical details of the practical implementation of an innovative time domain reflectometry (TDR)-system for monitoring rising damp in building structures. The proposed system employs wire-like, passive, diffused sensing elements (SE's) that are embedded, at the time of construction or renovation, inside the walls of the building to be monitored. The SE's remain permanently inside the wall, ready to be interrogated when necessary

    Moisture content measurements through TDR: A metrological assessment for industrial applications

    Get PDF
    In this paper a metrological assessment on the accuracy provided by a Time Domain Reflectometry (TDR)-based method for the estimation of moisture content of granular materials is proposed. In particular, comparative moisture content measurements are carried out through two different TDR instruments: an inexpensive portable unit and a high-performance unit. The main goals are first to assess a robust procedure for TDR moisture monitoring (in particular for sand-like materials), and second to provide a deep metrological analysis for minimizing and characterizing error contributions. This feature is particularly important when considering the proposed measurement procedures for industrial applications, where both accuracy and low cost must be guaranteed

    Diffused capacitance-based sensing for hydric control and watering optimization

    Get PDF
    Soil moisture measurements are essential especially in the agricultural field, where it is crucial to guarantee that the optimal amount of water is provided to the cultivations. Most soil moisture measurement systems are local sensors; hence, a multitude of sensors must be distributed all over the field to obtain a comprehensive picture of the soil condition. Starting from these considerations, the present work addresses the feasibility of employing diffused sensing elements (in a wire-like configuration) for sensing soil moisture variations, based on capacitance measurements. To this purpose, for a preliminary validation of the proposed methodology, several experiments were carried out, thus identifying the suitable setup configurations and the potential of the method

    On the use of dielectric spectroscopy for quality control of vegetable oils

    Get PDF
    Quality control of vegetable oils is becoming more stringent, and related laws are being enforced especially for avoiding adulteration. As a result, there is a substantial need for methods of analysis that could provide real-time in-situ monitoring, especially for quality control purposes during production process. In this regard, the present paper investigates the possibility of monitoring qualitative characteristics of vegetable oils through microwave dielectric spectroscopy, which is a highly versatile investigative approach. In particular, the Cole & Cole frequency-domain dielectric parameters are known to be strongly related to the compositional characteristics of various substances. This way, starting from traditional Time Domain Reflectometry measurements performed on oils, the corresponding frequency domain information is retrieved. Successively, through a minimization routine, the Cole & Cole parameters of each considered oil are extrapolated. Results show that different dielectric characteristics can be associated with different oils. It is important to point out that the characteristics of the proposed procedure can be automated and, therefore, it may represent a promising solution for practical monitoring applications

    An inverse validation for detecting pipe leaks with a TDR-based method

    Get PDF
    Recently, an innovative system based on time domain reflectometry (TDR) for the individuation of leaks in underground pipes has been proposed and validated. Starting from the results obtained so far, the present works aims at further investigating the practical applicability of the aforementioned system. In particular, the goal of this work is to assess the system in the detection of two close leaks (i.e. leakages that may occur on the same length of pipe). To this purpose, an experimental setup was arranged: two "leakage conditions" were imposed, and the position of the leaks were considered as unknown and calculated through the dedicated developed algorithm. Results show that, differently from traditional leak detection methods (in which the presence of a leak may "mask" the presence of other leaks), the TDR-based system successfully individuates and correctly localizes the presence of two leaks

    Noninvasive patch resonator-based measurements on cultural heritage materials

    Get PDF
    In this work, a noninvasive microwave-based system for monitoring water content in stone materials used in Cultural Heritage structures is presented. By placing a planar resonator in contact with the considered stone sample, through reflection scattering parameter measurements, it is possible to associate the resonant frequency of the resonator to the moisture content of the stone sample. In this way, an experimental relationship between resonant frequency and moisture content can be obtained. Experimental tests are carried out on two types of materials, namely gentile and carparo stones: which are typically found in Cultural Heritage structures in Southern Italy and they are particularly affected by deterioration and decay phenomena. Measurements were performed for five levels of water content of the stone samples, and the empirical relationship between each considered level of water content and the corresponding measured quantity were derived. The obtained results demonstrate that this solution appears robust

    Oxidative stress and multi-organel damage induced by two novel phytocannabinoids, cbdb and cbdp, in breast cancer cells

    Get PDF
    Over the last few years, much attention has been paid to phytocannabinoids derived from Cannabis for their therapeutic potential. ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD) are the most abundant compounds of the Cannabis sativa L. plant. Recently, novel phytocannabinoids, such as cannabidibutol (CBDB) and cannabidiphorol (CBDP), have been discovered. These new molecules exhibit the same terpenophenolic core of CBD and differ only for the length of the alkyl side chain. Roles of CBD homologs in physiological and pathological processes are emerging but the exact molecular mechanisms remain to be fully elucidated. Here, we investigated the biological effects of the newly discovered CBDB or CBDP, compared to the well-known natural and synthetic CBD (nat CBD and syn CBD) in human breast carcinoma cells that express CB receptors. In detail, our data demonstrated that the treatment of cells with the novel phytocannabinoids affects cell viability, increases the production of reactive oxygen species (ROS) and activates cellular pathways related to ROS signaling, as already demonstrated for natural CBD. Moreover, we observed that the biological activity is significantly increased upon combining CBD homologs with drugs that inhibit the activity of enzymes involved in the metabolism of endocannabinoids, such as the monoacylglycerol lipase (MAGL) inhibitor, or with drugs that induces the activation of cellular stress pathways, such as the phorbol ester 12-myristate 13-acetate (PMA)

    Large-scale implementation of a new TDR-based system for the monitoring of pipe leaks

    Get PDF
    In this paper, the practical implementation of an innovative time domain reflectometry (TDR)-based system for leak detection in underground water pipes is presented. This system, which had been previously developed and experimented on pilot plants, has now been installed (for the first time) on a large scale, in 10 km of pipes. The present work describes all the practical aspects and technical details (from the design to the functional tests), related to the implementation of the system

    Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in cannabis sativa l. Chemotypes with a focus on cannabichromenic acid synthase

    Get PDF
    Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids
    • …
    corecore